library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Pyroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 3 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
normal_df <- tcga_matrix[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "normal")))
normal_df$case_id <- paste0(sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(normal_df$case_id), "-"), `[`, 3))
tumor_df <- tcga_matrix[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
tumor_df$case_id <- paste0(sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(tumor_df$case_id), "-"), `[`, 3))
gene_df <- inner_join(normal_df, tumor_df, by = c("gene_id", "case_id", "deathtype", "gene", "description", "gene_biotype", "pmid", "comment"))
gene_df$log_fold = log2(gene_df$counts.y / gene_df$counts.x)
gene_df$strata <- ifelse(abs(gene_df$log_fold) >= 1.5, "HIGH", "LOW")
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
Our genes of interest are GSDMD (the primary executor of pyroptosis) and the differentially expressed genes..
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("GSDMD", genes$gene)) {
cat(project, gene, "\n\n")
error <- tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
cat("\n\n============================\n\n")
e
}
)
if(inherits(error, "error")) next
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD GSDMD
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.16 0.00854 0.0125
strata=LOW 34 9 8.84 0.00306 0.0125
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.07733 1.08040 0.69102 0.112 0.911
Likelihood ratio test=0.01 on 1 df, p=0.9104
n= 46, number of events= 12
============================
TCGA-COAD CHMP7
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 3 4.59 0.549 0.971
strata=LOW 30 9 7.41 0.340 0.971
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6636 1.9417 0.6849 0.969 0.333
Likelihood ratio test=1.02 on 1 df, p=0.3128
n= 46, number of events= 12
============================
TCGA-COAD GSDMC
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 32 8 8.06 0.000383 0.00145
strata=LOW 14 4 3.94 0.000782 0.00145
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.02602 1.02636 0.68250 0.038 0.97
Likelihood ratio test=0 on 1 df, p=0.9696
n= 46, number of events= 12
============================
TCGA-COAD ELANE
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 44 11 11.428 0.016 0.343
strata=LOW 2 1 0.572 0.321 0.343
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6125 1.8451 1.0623 0.577 0.564
Likelihood ratio test=0.28 on 1 df, p=0.5939
n= 46, number of events= 12
============================
TCGA-COAD IRF1
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 18 6 5.16 0.136 0.276
strata=LOW 28 6 6.84 0.103 0.276
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3196 0.7265 0.6109 -0.523 0.601
Likelihood ratio test=0.27 on 1 df, p=0.6032
n= 46, number of events= 12
============================
TCGA-COAD CYCS
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 19 6 4.49 0.509 0.937
strata=LOW 27 6 7.51 0.304 0.937
Chisq= 0.9 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.6206 0.5376 0.6510 -0.953 0.34
Likelihood ratio test=0.93 on 1 df, p=0.3342
n= 46, number of events= 12
============================
TCGA-COAD GSDMA
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 26 7 8 0.125 0.432
strata=LOW 20 5 4 0.250 0.432
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4221 1.5252 0.6467 0.653 0.514
Likelihood ratio test=0.42 on 1 df, p=0.5147
n= 46, number of events= 12
============================
TCGA-COAD CASP4
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.99 3.47e-05 6.53e-05
strata=LOW 35 8 8.01 1.73e-05 6.53e-05
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.005542 0.994474 0.685863 -0.008 0.994
Likelihood ratio test=0 on 1 df, p=0.9936
n= 46, number of events= 12
============================
TCGA-COAD BAK1
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 20 4 4.92 0.171 0.345
strata=LOW 26 8 7.08 0.119 0.345
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3811 1.4640 0.6526 0.584 0.559
Likelihood ratio test=0.35 on 1 df, p=0.5556
n= 46, number of events= 12
============================
TCGA-COAD NOD1
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 3 2.01 0.4895 0.617
strata=LOW 37 9 9.99 0.0984 0.617
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5387 0.5835 0.6938 -0.776 0.438
Likelihood ratio test=0.56 on 1 df, p=0.4552
n= 46, number of events= 12
============================
TCGA-COAD NLRP7
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 37 11 10.66 0.0107 0.101
strata=LOW 9 1 1.34 0.0852 0.101
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3377 0.7134 1.0657 -0.317 0.751
Likelihood ratio test=0.11 on 1 df, p=0.7409
n= 46, number of events= 12
============================
TCGA-COAD CASP3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 15 3 3.44 0.0563 0.0878
strata=LOW 31 9 8.56 0.0226 0.0878
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2062 1.2291 0.6972 0.296 0.767
Likelihood ratio test=0.09 on 1 df, p=0.7646
n= 46, number of events= 12
============================
TCGA-COAD GSDMB
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 25 6 6.34 0.0187 0.0448
strata=LOW 21 6 5.66 0.0209 0.0448
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1292 1.1379 0.6106 0.212 0.832
Likelihood ratio test=0.04 on 1 df, p=0.8328
n= 46, number of events= 12
============================
TCGA-COAD GZMB
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 30 6 7.16 0.188 0.497
strata=LOW 16 6 4.84 0.277 0.497
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4243 1.5286 0.6064 0.7 0.484
Likelihood ratio test=0.49 on 1 df, p=0.4829
n= 46, number of events= 12
============================
TCGA-COAD GSDME
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 4 4.73 0.1141 0.201
strata=LOW 29 8 7.27 0.0744 0.201
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2803 1.3235 0.6275 0.447 0.655
Likelihood ratio test=0.2 on 1 df, p=0.6515
n= 46, number of events= 12
============================
TCGA-COAD CHMP3
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 13 3 2.66 0.0438 0.0602
strata=LOW 33 9 9.34 0.0125 0.0602
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1702 0.8435 0.6941 -0.245 0.806
Likelihood ratio test=0.06 on 1 df, p=0.8085
n= 46, number of events= 12
============================
TCGA-COAD DPP9
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 9 1 1.73 0.3108 0.377
strata=LOW 37 11 10.27 0.0525 0.377
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6365 1.8899 1.0547 0.604 0.546
Likelihood ratio test=0.43 on 1 df, p=0.5114
n= 46, number of events= 12
============================
TCGA-COAD NOD2
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 24 5 6.26 0.254 0.583
strata=LOW 22 7 5.74 0.277 0.583
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4755 1.6089 0.6288 0.756 0.449
Likelihood ratio test=0.59 on 1 df, p=0.4417
n= 46, number of events= 12
============================
TCGA-COAD NLRC4
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 5 5.24 0.01107 0.0223
strata=LOW 29 7 6.76 0.00858 0.0223
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.09364 1.09817 0.62729 0.149 0.881
Likelihood ratio test=0.02 on 1 df, p=0.8809
n= 46, number of events= 12
============================
TCGA-COAD GSDMD
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.16 0.00854 0.0125
strata=LOW 34 9 8.84 0.00306 0.0125
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.07733 1.08040 0.69102 0.112 0.911
Likelihood ratio test=0.01 on 1 df, p=0.9104
n= 46, number of events= 12
============================
TCGA-COAD TIRAP
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 10 4 2.44 0.999 1.33
strata=LOW 36 8 9.56 0.255 1.33
Chisq= 1.3 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.7315 0.4812 0.6484 -1.128 0.259
Likelihood ratio test=1.19 on 1 df, p=0.2751
n= 46, number of events= 12
============================
TCGA-COAD SCAF11
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 15 3 3.48 0.0674 0.104
strata=LOW 31 9 8.52 0.0276 0.104
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2228 1.2496 0.6920 0.322 0.747
Likelihood ratio test=0.11 on 1 df, p=0.744
n= 46, number of events= 12
============================
TCGA-COAD NLRP6
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 28 9 7.21 0.446 1.2
strata=LOW 18 3 4.79 0.671 1.2
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.7302 0.4818 0.6805 -1.073 0.283
Likelihood ratio test=1.26 on 1 df, p=0.2611
n= 46, number of events= 12
============================
TCGA-COAD AIM2
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 25 7 5.14 0.672 1.33
strata=LOW 21 5 6.86 0.504 1.33
Chisq= 1.3 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.7302 0.4818 0.6462 -1.13 0.258
Likelihood ratio test=1.34 on 1 df, p=0.2474
n= 46, number of events= 12
============================
TCGA-COAD CASP6
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 3 3.55 0.0846 0.134
strata=LOW 29 9 8.45 0.0355 0.134
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2549 1.2903 0.6972 0.366 0.715
Likelihood ratio test=0.14 on 1 df, p=0.7105
n= 46, number of events= 12
============================
TCGA-COAD NLRP2
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 38 12 9.86 0.463 2.69
strata=LOW 8 0 2.14 2.138 2.69
Chisq= 2.7 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.937e+01 3.862e-09 9.797e+03 -0.002 0.998
Likelihood ratio test=4.79 on 1 df, p=0.02864
n= 46, number of events= 12
============================
TCGA-COAD IRF2
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 17 3 3.82 0.1759 0.293
strata=LOW 29 9 8.18 0.0821 0.293
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3758 1.4562 0.6980 0.538 0.59
Likelihood ratio test=0.3 on 1 df, p=0.5824
n= 46, number of events= 12
============================
TCGA-COAD PJVK
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 8 3 2.27 0.2377 0.301
strata=LOW 38 9 9.73 0.0553 0.301
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3706 0.6903 0.6792 -0.546 0.585
Likelihood ratio test=0.28 on 1 df, p=0.5963
n= 46, number of events= 12
============================
TCGA-COAD CASP5
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 36 9 9.39 0.0158 0.083
strata=LOW 10 3 2.61 0.0567 0.083
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2059 1.2287 0.7155 0.288 0.773
Likelihood ratio test=0.08 on 1 df, p=0.7766
n= 46, number of events= 12
============================
TCGA-COAD NLRP1
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 22 8 5.12 1.62 3.14
strata=LOW 24 4 6.88 1.21 3.14
Chisq= 3.1 on 1 degrees of freedom, p= 0.08
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.1687 0.3108 0.6930 -1.687 0.0917
Likelihood ratio test=3.23 on 1 df, p=0.07214
n= 46, number of events= 12
============================
TCGA-COAD CASP9
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 15 3 3.19 0.0108 0.0161
strata=LOW 31 9 8.81 0.0039 0.0161
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.08831 1.09232 0.69600 0.127 0.899
Likelihood ratio test=0.02 on 1 df, p=0.8985
n= 46, number of events= 12
============================
TCGA-COAD PLCG1
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 3 3.58 0.0934 0.14
strata=LOW 30 9 8.42 0.0397 0.14
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2538 1.2889 0.6803 0.373 0.709
Likelihood ratio test=0.14 on 1 df, p=0.7041
n= 46, number of events= 12
============================
TCGA-COAD IL18
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 28 6 6.43 0.0286 0.0702
strata=LOW 18 6 5.57 0.0331 0.0702
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1617 1.1755 0.6109 0.265 0.791
Likelihood ratio test=0.07 on 1 df, p=0.7919
n= 46, number of events= 12
============================
TCGA-COAD DPP8
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 16 4 3.95 0.00057 0.000906
strata=LOW 30 8 8.05 0.00028 0.000906
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.01903 0.98115 0.63232 -0.03 0.976
Likelihood ratio test=0 on 1 df, p=0.976
n= 46, number of events= 12
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
NULL
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎