I. Preliminaries

Loading libraries

library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")

II. Downloading the TCGA gene expression data

Create a function for downloading TCGA gene expression data.

For more detailed documentation, refer to 2. Differential Gene Expression Analysis - TCGA.Rmd.

query_and_filter_samples <- function(project) {
  query_tumor <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = "Primary Tumor"
  )
  tumor <- getResults(query_tumor)

  query_normal <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = "Solid Tissue Normal"
  )
  normal <- getResults(query_normal)

  submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
    dplyr::select(cases.submitter_id)
  tumor <- tumor %>%
    dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
  normal <- normal %>%
    dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)

  samples <- rbind(tumor, normal)
  unique(samples$sample_type)

  query_project <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = c("Solid Tissue Normal", "Primary Tumor"),
    barcode = as.list(samples$sample.submitter_id)
  )

  # If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
  # uncomment the line below

  # GDCdownload(query_project)

  return(list(samples = samples, query_project = query_project))
}

Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).

projects <- c("TCGA-COAD")

with_results_projects <- c()

samples <- list()
project_data <- list()

for (project in projects) {
  result <- tryCatch(
    {
      result <- query_and_filter_samples(project)
      samples[[project]] <- result$samples
      project_data[[project]] <- result$query_project

      with_results_projects <- c(with_results_projects, project)
    },
    error = function(e) {

    }
  )
}

Running the code block above should generate and populate a directory named GDCdata.

III. Data preprocessing

Construct the RNA-seq count matrix for each cancer type.

tcga_data <- list()
tcga_matrix <- list()

projects <- with_results_projects
for (project in projects) {
  tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
  count_matrix <- assay(tcga_data[[project]], "unstranded")

  # Remove duplicate entries
  count_matrix_df <- data.frame(count_matrix)
  count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
  count_matrix <- data.matrix(count_matrix_df)
  rownames(count_matrix) <- cleanid(rownames(count_matrix))
  count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]

  tcga_matrix[[project]] <- count_matrix
}

Format the samples table so that it can be fed as input to DESeq2.

for (project in projects) {
  rownames(samples[[project]]) <- samples[[project]]$cases
  samples[[project]] <- samples[[project]] %>%
    dplyr::select(case = "cases.submitter_id", type = "sample_type")
  samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
  samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}

DESeq2 requires the row names of samples should be identical to the column names of count_matrix.

for (project in projects) {
  colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
  tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]

  # Sanity check
  print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}

IV. Differential gene expression analysis

For more detailed documentation on obtaining the gene set, refer to 7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd.

RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"

Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.

filter_gene_set_and_perform_dgea <- function(genes) {
  tcga_rcd <- list()

  for (project in projects) {
    rownames(genes) <- genes$gene_id
    tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
    tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
  }

  dds_rcd <- list()
  res_rcd <- list()

  for (project in projects) {
    print(project)
    print("=============")
    dds <- DESeqDataSetFromMatrix(
      countData = tcga_rcd[[project]],
      colData = samples[[project]],
      design = ~type
    )
    dds <- filter_genes(dds, min_count = 10)
    dds$type <- relevel(dds$type, ref = "normal")
    dds_rcd[[project]] <- DESeq(dds)
    res_rcd[[project]] <- results(dds_rcd[[project]])
  }

  deseq.bbl.data <- list()

  for (project in projects) {
    deseq.results <- res_rcd[[project]]
    deseq.bbl.data[[project]] <- data.frame(
      row.names = rownames(deseq.results),
      baseMean = deseq.results$baseMean,
      log2FoldChange = deseq.results$log2FoldChange,
      lfcSE = deseq.results$lfcSE,
      stat = deseq.results$stat,
      pvalue = deseq.results$pvalue,
      padj = deseq.results$padj,
      cancer_type = project,
      gene_symbol = genes[rownames(deseq.results), "gene"]
    )
  }

  deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
  deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)

  return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
  sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)

  deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
    mutate(fdr_category = cut(padj,
      breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
      labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
      right = FALSE
    ))

  top_genes <- deseq.bbl.data.combined %>%
    group_by(cancer_type) %>%
    mutate(rank = rank(-abs(log2FoldChange))) %>%
    dplyr::filter(rank <= 10) %>%
    ungroup()

  ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
    geom_point(alpha = 0.5, shape = 21, color = "black") +
    scale_size_manual(values = sizes) +
    scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
    theme_minimal() +
    theme(
      axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
    ) +
    theme(legend.position = "bottom") +
    theme(legend.position = "bottom") +
    labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
  tcga_rcd <- list()

  for (project in projects) {
    rownames(genes) <- genes$gene_id
    tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
    tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
  }

  vsd_rcd <- list()

  for (project in projects) {
    print(project)
    print("=============")
    dds <- DESeqDataSetFromMatrix(
      countData = tcga_rcd[[project]],
      colData = samples[[project]],
      design = ~type
    )
    dds <- filter_genes(dds, min_count = 10)

    # Perform variance stabilization
    dds <- estimateSizeFactors(dds)
    nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
    vsd <- vst(dds, nsub = nsub)
    vsd_rcd[[project]] <- assay(vsd)
  }

  return(vsd_rcd)
}

Necroptosis

Fetch the gene set of interest.

genes <- read.csv(paste0(RCDdb, "Necroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes

Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.

deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 1 genes
-- DESeq argument 'minReplicatesForReplace' = 7 
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined

Plot the results.

plot_dgea(deseq.bbl.data.combined)

Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).

vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="

V. Downloading the clinical data

Download clinical data from TCGA, and perform some preprocessing: - The deceased column should be FALSE if the patient is alive and TRUE otherwise - The overall_survival column should reflect the follow-up time if the patient is alive and the days to death otherwise

download_clinical_data <- function(project) {
  clinical_data <- GDCquery_clinic(project)
  clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
  clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
    clinical_data$days_to_last_follow_up,
    clinical_data$days_to_death
  )

  return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
  tcga_clinical[[project]] <- download_clinical_data(project)
}

VI. Performing survival analysis

Write utility functions for performing survival analysis.

construct_gene_df <- function(gene_of_interest, project) {
  gene_df <- vsd[[project]] %>%
    as.data.frame() %>%
    rownames_to_column(var = "gene_id") %>%
    gather(key = "case_id", value = "counts", -gene_id) %>%
    left_join(., genes, by = "gene_id") %>%
    dplyr::filter(gene == gene_of_interest) %>%
    dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "normal")))

  q1 <- quantile(gene_df$counts, probs = 0.25)
  q3 <- quantile(gene_df$counts, probs = 0.75)
  gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
  gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
  gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
                          sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-', 
                          sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
  gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
  
  return(gene_df)
}
compute_surival_fit <- function(gene_df) {
  return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
  return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
  return(ggsurvplot(fit,
    data = gene_df,
    pval = T,
    risk.table = T,
    risk.table.height = 0.3
  ))
}
compute_survival_diff <- function(gene_df) {
  return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}

Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html

MLKL is the primary executor of necroptosis.

significant_projects <- c()
significant_genes <- c()

ctr <- 1
for (project in projects) {
  for (gene in c("MLKL", genes$gene)) {
    cat(project, gene, "\n\n")
    tryCatch (
      {
        gene_df <- construct_gene_df(gene, project)
      },
      error = function(e) {
      }
    )

    if (nrow(gene_df) > 0) {
      fit <- compute_surival_fit(gene_df)
      tryCatch (
        {
          survival <- compute_survival_diff(gene_df)
          cox <- compute_cox(gene_df)
          print(ctr)
          ctr <- ctr + 1
          print(survival)
          cat("\n")
          print(cox)
          print(plot_survival(fit))
          if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
            significant_projects <- c(significant_projects, project)
            significant_genes <- c(significant_genes, gene)
          }
        },
        error = function(e) {
        }
      )
      
    }
    
    cat("\n\n============================\n\n")
  }
}
TCGA-COAD MLKL 

[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        6     5.35    0.0781     0.242
strata=LOW  11        3     3.65    0.1147     0.242

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3753    0.6871   0.7675 -0.489 0.625

Likelihood ratio test=0.24  on 1 df, p=0.6228
n= 22, number of events= 9 


============================

TCGA-COAD RBCK1 

[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        7     4.92     0.882      2.12
strata=LOW  11        3     5.08     0.853      2.12

 Chisq= 2.1  on 1 degrees of freedom, p= 0.1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.1392    0.3201   0.8201 -1.389 0.165

Likelihood ratio test=2.25  on 1 df, p=0.1338
n= 22, number of events= 10 


============================

TCGA-COAD JAK2 

[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     2.52     0.874      1.38
strata=LOW  11        3     4.48     0.491      1.38

 Chisq= 1.4  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.8750    0.4168   0.7682 -1.139 0.255

Likelihood ratio test=1.31  on 1 df, p=0.2522
n= 22, number of events= 7 


============================

TCGA-COAD ZBP1 

[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     5.04  0.000314   0.00094
strata=LOW  11        3     2.96  0.000534   0.00094

 Chisq= 0  on 1 degrees of freedom, p= 1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW 0.02359   1.02387  0.76968 0.031 0.976

Likelihood ratio test=0  on 1 df, p=0.9756
n= 22, number of events= 8 


============================

TCGA-COAD RNF31 

[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.38     0.113     0.224
strata=LOW  11        3     3.62     0.105     0.224

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3641    0.6948   0.7733 -0.471 0.638

Likelihood ratio test=0.22  on 1 df, p=0.6359
n= 22, number of events= 7 


============================

TCGA-COAD IFNB1 

[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.38     0.113     0.224
strata=LOW  11        3     3.62     0.105     0.224

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3641    0.6948   0.7733 -0.471 0.638

Likelihood ratio test=0.22  on 1 df, p=0.6359
n= 22, number of events= 7 


============================

TCGA-COAD TRAF5 

[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.53     0.614      1.39
strata=LOW  11        3     4.47     0.485      1.39

 Chisq= 1.4  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.8894    0.4109   0.7774 -1.144 0.253

Likelihood ratio test=1.32  on 1 df, p=0.2503
n= 22, number of events= 8 


============================

TCGA-COAD BIRC2 

[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        1     2.46     0.863      1.71
strata=LOW  11        5     3.54     0.598      1.71

 Chisq= 1.7  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.361     3.899    1.121 1.214 0.225

Likelihood ratio test=1.84  on 1 df, p=0.1753
n= 22, number of events= 6 


============================

TCGA-COAD TRAF2 

[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     5.59    0.0628     0.247
strata=LOW  11        3     2.41    0.1459     0.247

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.4058    1.5004   0.8222 0.494 0.622

Likelihood ratio test=0.24  on 1 df, p=0.6228
n= 22, number of events= 8 


============================

TCGA-COAD BCL2 

[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.72    0.0217    0.0546
strata=LOW  11        3     3.28    0.0246    0.0546

 Chisq= 0.1  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.1912    0.8260   0.8191 -0.233 0.815

Likelihood ratio test=0.05  on 1 df, p=0.8156
n= 22, number of events= 7 


============================

TCGA-COAD STAT4 

[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        1     2.39      0.81      2.14
strata=LOW  11        3     1.61      1.20      2.14

 Chisq= 2.1  on 1 degrees of freedom, p= 0.1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.608     4.995    1.196 1.345 0.179

Likelihood ratio test=2.14  on 1 df, p=0.1432
n= 22, number of events= 4 


============================

TCGA-COAD BIRC3 

[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     3.04     0.353     0.741
strata=LOW  11        4     2.96     0.361     0.741

 Chisq= 0.7  on 1 degrees of freedom, p= 0.4 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.7432    2.1026   0.8814 0.843 0.399

Likelihood ratio test=0.75  on 1 df, p=0.3851
n= 22, number of events= 6 


============================

TCGA-COAD STAT1 

[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.17      1.06      2.77
strata=LOW  11        1     2.83      1.19      2.77

 Chisq= 2.8  on 1 degrees of freedom, p= 0.1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW -1.6717    0.1879   1.1220 -1.49 0.136

Likelihood ratio test=2.86  on 1 df, p=0.09107
n= 22, number of events= 6 


============================

TCGA-COAD STAT2 

[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.09      1.17      1.97
strata=LOW  11        3     4.91      0.74      1.97

 Chisq= 2  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.0018    0.3672   0.7409 -1.352 0.176

Likelihood ratio test=1.91  on 1 df, p=0.1674
n= 22, number of events= 8 


============================

TCGA-COAD TNFSF10 

[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     4.68     0.606      1.29
strata=LOW  11        7     5.32     0.534      1.29

 Chisq= 1.3  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.7912    2.2060   0.7133 1.109 0.267

Likelihood ratio test=1.31  on 1 df, p=0.2527
n= 22, number of events= 10 


============================

TCGA-COAD TYK2 

[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.18     0.213     0.392
strata=LOW  11        3     3.82     0.177     0.392

 Chisq= 0.4  on 1 degrees of freedom, p= 0.5 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW -0.4752    0.6218   0.7658 -0.62 0.535

Likelihood ratio test=0.39  on 1 df, p=0.5322
n= 22, number of events= 7 


============================

TCGA-COAD PPIA 

[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     1.94   0.00203   0.00394
strata=LOW  11        3     3.06   0.00129   0.00394

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z    p
strataLOW -0.06283   0.93910  1.00050 -0.063 0.95

Likelihood ratio test=0  on 1 df, p=0.9499
n= 22, number of events= 5 


============================

TCGA-COAD TNFRSF1A 

[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     2.64      2.10      4.04
strata=LOW  11        2     4.36      1.28      4.04

 Chisq= 4  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z      p
strataLOW -1.9975    0.1357   1.1300 -1.768 0.0771

Likelihood ratio test=4.28  on 1 df, p=0.03856
n= 22, number of events= 7 


============================

TCGA-COAD CAPN2 

[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     4.33     0.408     0.924
strata=LOW  11        6     4.67     0.378     0.924

 Chisq= 0.9  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.7005    2.0148   0.7425 0.943 0.345

Likelihood ratio test=0.92  on 1 df, p=0.3368
n= 22, number of events= 9 


============================

TCGA-COAD FAS 

[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        1     2.68     1.050      1.91
strata=LOW  11        5     3.32     0.845      1.91

 Chisq= 1.9  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.399     4.053    1.097 1.275 0.202

Likelihood ratio test=2.13  on 1 df, p=0.1448
n= 22, number of events= 6 


============================

TCGA-COAD PGAM5 

[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     4.48    0.0611      0.22
strata=LOW  11        2     2.52    0.1084      0.22

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.4271    0.6524   0.9164 -0.466 0.641

Likelihood ratio test=0.22  on 1 df, p=0.6376
n= 22, number of events= 7 


============================

TCGA-COAD MLKL 

[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        6     5.35    0.0781     0.242
strata=LOW  11        3     3.65    0.1147     0.242

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3753    0.6871   0.7675 -0.489 0.625

Likelihood ratio test=0.24  on 1 df, p=0.6228
n= 22, number of events= 9 


============================

TCGA-COAD FADD 

[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     2.81     0.508     0.993
strata=LOW  11        3     4.19     0.340     0.993

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW -0.8604    0.4230   0.8868 -0.97 0.332

Likelihood ratio test=1.01  on 1 df, p=0.3157
n= 22, number of events= 7 


============================

TCGA-COAD TRPM7 

[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     3.02     0.343     0.623
strata=LOW  11        5     3.98     0.260     0.623

 Chisq= 0.6  on 1 degrees of freedom, p= 0.4 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.6567    1.9283   0.8463 0.776 0.438

Likelihood ratio test=0.65  on 1 df, p=0.4205
n= 22, number of events= 7 


============================

TCGA-COAD FASLG 

[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     3.26    0.0214    0.0478
strata=LOW  11        3     2.74    0.0256    0.0478

 Chisq= 0  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.1796    1.1968   0.8230 0.218 0.827

Likelihood ratio test=0.05  on 1 df, p=0.8273
n= 22, number of events= 6 


============================

TCGA-COAD TNFRSF10B 

[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     5.65    0.0752     0.224
strata=LOW  11        4     3.35    0.1269     0.224

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.3379    1.4020   0.7172 0.471 0.638

Likelihood ratio test=0.22  on 1 df, p=0.6382
n= 22, number of events= 9 


============================

TCGA-COAD VPS4A 

[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     4.31     0.398      1.05
strata=LOW  11        4     2.69     0.638      1.05

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.7695    2.1587   0.7690 1.001 0.317

Likelihood ratio test=1.01  on 1 df, p=0.314
n= 22, number of events= 7 


============================

TCGA-COAD TNFRSF10A 

[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     4.52    0.0595     0.156
strata=LOW  11        4     3.48    0.0772     0.156

 Chisq= 0.2  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.3024    1.3531   0.7689 0.393 0.694

Likelihood ratio test=0.16  on 1 df, p=0.6926
n= 22, number of events= 8 


============================

TCGA-COAD GLUD1 

[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     1.95     0.567     0.958
strata=LOW  11        3     4.05     0.273     0.958

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.8832    0.4135   0.9291 -0.951 0.342

Likelihood ratio test=0.93  on 1 df, p=0.3352
n= 22, number of events= 6 


============================

TCGA-COAD EIF2AK2 

[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     2.78     0.534         1
strata=LOW  11        2     3.22     0.461         1

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.8431    0.4304   0.8681 -0.971 0.331

Likelihood ratio test=1.01  on 1 df, p=0.3154
n= 22, number of events= 6 


============================

TCGA-COAD CYLD 

[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     2.87   0.00580   0.00987
strata=LOW  11        4     4.13   0.00403   0.00987

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z     p
strataLOW -0.07599   0.92683  0.76520 -0.099 0.921

Likelihood ratio test=0.01  on 1 df, p=0.921
n= 22, number of events= 7 


============================

TCGA-COAD SPATA2 

[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     4.83     0.696      1.96
strata=LOW  11        5     3.17     1.062      1.96

 Chisq= 2  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 1.1225    3.0726   0.8418 1.333 0.182

Likelihood ratio test=1.99  on 1 df, p=0.158
n= 22, number of events= 8 


============================

TCGA-COAD DNM1L 

[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.64     0.511      1.26
strata=LOW  11        2     3.36     0.553      1.26

 Chisq= 1.3  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.9414    0.3901   0.8681 -1.085 0.278

Likelihood ratio test=1.26  on 1 df, p=0.2613
n= 22, number of events= 7 


============================

TCGA-COAD CFLAR 

[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.37     0.119     0.234
strata=LOW  11        3     3.63     0.110     0.234

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z    p
strataLOW -0.3719    0.6895   0.7722 -0.482 0.63

Likelihood ratio test=0.23  on 1 df, p=0.628
n= 22, number of events= 7 


============================

TCGA-COAD TICAM1 

[1] 35
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     3.56     0.687      1.73
strata=LOW  11        4     2.44     1.005      1.73

 Chisq= 1.7  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.101     3.008    0.876 1.257 0.209

Likelihood ratio test=1.7  on 1 df, p=0.1922
n= 22, number of events= 6 


============================

TCGA-COAD HSP90AA1 

[1] 36
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     2.86   0.00664    0.0128
strata=LOW  11        3     3.14   0.00605    0.0128

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z    p
strataLOW -0.09246   0.91168  0.81875 -0.113 0.91

Likelihood ratio test=0.01  on 1 df, p=0.9101
n= 22, number of events= 6 


============================

TCGA-COAD IL33 

[1] 37
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.65     0.495      1.23
strata=LOW  11        2     3.35     0.541      1.23

 Chisq= 1.2  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.9320    0.3938   0.8691 -1.072 0.284

Likelihood ratio test=1.23  on 1 df, p=0.2669
n= 22, number of events= 7 


============================

TCGA-COAD IRF9 

[1] 38
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.96     0.274     0.495
strata=LOW  11        4     5.04     0.215     0.495

 Chisq= 0.5  on 1 degrees of freedom, p= 0.5 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.4708    0.6245   0.6750 -0.698 0.485

Likelihood ratio test=0.49  on 1 df, p=0.4837
n= 22, number of events= 9 


============================

TCGA-COAD SHARPIN 

[1] 39
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     4.85     0.149     0.598
strata=LOW  11        3     2.15     0.336     0.598

 Chisq= 0.6  on 1 degrees of freedom, p= 0.4 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.6968    2.0074   0.9189 0.758 0.448

Likelihood ratio test=0.59  on 1 df, p=0.4422
n= 22, number of events= 7 


============================

TCGA-COAD IFNAR1 

[1] 40
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     2.53    0.0868     0.177
strata=LOW  11        3     3.47    0.0633     0.177

 Chisq= 0.2  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3824    0.6823   0.9151 -0.418 0.676

Likelihood ratio test=0.18  on 1 df, p=0.6731
n= 22, number of events= 6 


============================

TCGA-COAD XIAP 

[1] 41
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     4.41    0.0389     0.103
strata=LOW  11        4     3.59    0.0478     0.103

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.2506    1.2848   0.7819 0.321 0.749

Likelihood ratio test=0.1  on 1 df, p=0.7476
n= 22, number of events= 8 


============================

TCGA-COAD VDAC3 

[1] 42
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     2.74    0.0242    0.0448
strata=LOW  11        3     3.26    0.0204    0.0448

 Chisq= 0  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.1729    0.8412   0.8179 -0.211 0.833

Likelihood ratio test=0.04  on 1 df, p=0.8327
n= 22, number of events= 6 


============================

TCGA-COAD CAMK2A 

[1] 43
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     3.92     0.300     0.603
strata=LOW  11        3     4.08     0.287     0.603

 Chisq= 0.6  on 1 degrees of freedom, p= 0.4 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.5668    0.5673   0.7389 -0.767 0.443

Likelihood ratio test=0.61  on 1 df, p=0.4356
n= 22, number of events= 8 


============================

TCGA-COAD VDAC1 

[1] 44
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     4.36     0.424      1.01
strata=LOW  11        5     3.64     0.508      1.01

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.7426    2.1013   0.7533 0.986 0.324

Likelihood ratio test=1  on 1 df, p=0.3165
n= 22, number of events= 8 


============================

TCGA-COAD RIPK3 

[1] 45
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     4.36      1.28      2.88
strata=LOW  11        6     3.64      1.54      2.88

 Chisq= 2.9  on 1 degrees of freedom, p= 0.09 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 1.3072    3.6957   0.8235 1.587 0.112

Likelihood ratio test=2.95  on 1 df, p=0.0859
n= 22, number of events= 8 


============================

TCGA-COAD CAPN1 

[1] 46
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     3.31    0.0282    0.0666
strata=LOW  11        3     2.69    0.0345    0.0666

 Chisq= 0.1  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.2167    1.2420   0.8412 0.258 0.797

Likelihood ratio test=0.07  on 1 df, p=0.7969
n= 22, number of events= 6 


============================

TCGA-COAD USP21 

[1] 47
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     1.97  0.000522   0.00108
strata=LOW  11        2     2.03  0.000506   0.00108

 Chisq= 0  on 1 degrees of freedom, p= 1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z     p
strataLOW -0.03366   0.96690  1.02466 -0.033 0.974

Likelihood ratio test=0  on 1 df, p=0.9738
n= 22, number of events= 4 


============================

TCGA-COAD AIFM1 

[1] 48
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     3.38    0.0433    0.0854
strata=LOW  11        4     3.62    0.0405    0.0854

 Chisq= 0.1  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.2249    1.2523   0.7711 0.292 0.771

Likelihood ratio test=0.09  on 1 df, p=0.7696
n= 22, number of events= 7 


============================

TCGA-COAD TRADD 

[1] 49
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3     2.73    0.0271    0.0638
strata=LOW  11        3     3.27    0.0226    0.0638

 Chisq= 0.1  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.2372    0.7888   0.9409 -0.252 0.801

Likelihood ratio test=0.06  on 1 df, p=0.8
n= 22, number of events= 6 


============================

TCGA-COAD OPTN 

[1] 50
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     3.89   0.00311   0.00611
strata=LOW  11        5     5.11   0.00237   0.00611

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z     p
strataLOW -0.05547   0.94604  0.70976 -0.078 0.938

Likelihood ratio test=0.01  on 1 df, p=0.9377
n= 22, number of events= 9 


============================

TCGA-COAD PPID 

[1] 51
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     2.22   0.02088     0.038
strata=LOW  11        5     4.78   0.00966     0.038

 Chisq= 0  on 1 degrees of freedom, p= 0.8 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.1788    1.1958   0.9188 0.195 0.846

Likelihood ratio test=0.04  on 1 df, p=0.8449
n= 22, number of events= 7 


============================

TCGA-COAD RIPK1 

[1] 52
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     2.86     0.451     0.903
strata=LOW  11        4     5.14     0.251     0.903

 Chisq= 0.9  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.8254    0.4381   0.8897 -0.928 0.354

Likelihood ratio test=0.92  on 1 df, p=0.3378
n= 22, number of events= 8 


============================

TCGA-COAD TLR3 

[1] 53
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        4     2.57     0.793      1.65
strata=LOW  11        3     4.43     0.461      1.65

 Chisq= 1.6  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.3402    0.2618   1.1217 -1.195 0.232

Likelihood ratio test=1.78  on 1 df, p=0.1827
n= 22, number of events= 7 


============================

TCGA-COAD FAF1 

[1] 54
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        2     2.09   0.00399   0.00864
strata=LOW  11        2     1.91   0.00437   0.00864

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW 0.09451   1.09912  1.01707 0.093 0.926

Likelihood ratio test=0.01  on 1 df, p=0.926
n= 22, number of events= 4 


============================

TCGA-COAD JAK1 

[1] 55
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        3      1.9     0.634      1.21
strata=LOW  11        2      3.1     0.389      1.21

 Chisq= 1.2  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z   p
strataLOW -1.1978    0.3019   1.1551 -1.037 0.3

Likelihood ratio test=1.25  on 1 df, p=0.2629
n= 22, number of events= 5 


============================

Display the results only for genes where a significant difference in survival has been reported.

significant_genes
[1] "TNFRSF1A"
num_significant_genes <- length(significant_genes)

if (num_significant_genes > 0) {
  for (i in 1 : num_significant_genes) {
    project <- significant_projects[[i]]
    gene <- significant_genes[[i]]
    
    cat(project, gene, "\n\n")
    gene_df <- construct_gene_df(gene, project)
    
    fit <- compute_surival_fit(gene_df)
    survival <- compute_survival_diff(gene_df)
    cox <- compute_cox(gene_df)
    print(survival)
    cat("\n")
    print(cox)
    print(plot_survival(fit))
    
    cat("\n\n============================\n\n")
  } 
}
TCGA-COAD TNFRSF1A 

Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

             N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11        5     2.64      2.10      4.04
strata=LOW  11        2     4.36      1.28      4.04

 Chisq= 4  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z      p
strataLOW -1.9975    0.1357   1.1300 -1.768 0.0771

Likelihood ratio test=4.28  on 1 df, p=0.03856
n= 22, number of events= 7 


============================


  1. De La Salle University, Manila, Philippines, ↩︎

  2. De La Salle University, Manila, Philippines, ↩︎

LS0tDQp0aXRsZTogIlN1cnZpdmFsIEFuYWx5c2lzIg0Kc3VidGl0bGU6ICJDb2xvcmVjdGFsIENhbmNlciB8IE5lY3JvcHRvc2lzIHwgVW5pcXVlIEdlbmVzIHBlciBSQ0QgVHlwZSB8IEdlbmUgRXhwcmVzc2lvbiBvZiBOb3JtYWwgU2FtcGxlcyINCmF1dGhvcjogDQogIC0gTWFyayBFZHdhcmQgTS4gR29uemFsZXNeW0RlIExhIFNhbGxlIFVuaXZlcnNpdHksIE1hbmlsYSwgUGhpbGlwcGluZXMsIGdvbnphbGVzLm1hcmtlZHdhcmRAZ21haWwuY29tXQ0KICAtIERyLiBBbmlzaCBNLlMuIFNocmVzdGhhXltEZSBMYSBTYWxsZSBVbml2ZXJzaXR5LCBNYW5pbGEsIFBoaWxpcHBpbmVzLCBhbmlzaC5zaHJlc3RoYUBkbHN1LmVkdS5waF0NCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIEkuIFByZWxpbWluYXJpZXMNCg0KIyMjIExvYWRpbmcgbGlicmFyaWVzDQoNCmBgYHtyLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSgidGlkeXZlcnNlIikNCmxpYnJhcnkoInRpYmJsZSIpDQpsaWJyYXJ5KCJtc2lnZGJyIikNCmxpYnJhcnkoImdncGxvdDIiKQ0KbGlicmFyeSgiVENHQWJpb2xpbmtzIikNCmxpYnJhcnkoIlJOQXNlcVFDIikNCmxpYnJhcnkoIkRFU2VxMiIpDQpsaWJyYXJ5KCJlbnNlbWJsZGIiKQ0KbGlicmFyeSgicHVycnIiKQ0KbGlicmFyeSgibWFncml0dHIiKQ0KbGlicmFyeSgidnNuIikNCmxpYnJhcnkoIm1hdHJpeFN0YXRzIikNCmxpYnJhcnkoImRwbHlyIikNCmxpYnJhcnkoImdyZXgiKQ0KbGlicmFyeSgic3Vydm1pbmVyIikNCmxpYnJhcnkoInN1cnZpdmFsIikNCmBgYA0KDQojIyBJSS4gRG93bmxvYWRpbmcgdGhlIFRDR0EgZ2VuZSBleHByZXNzaW9uIGRhdGEgDQoNCkNyZWF0ZSBhIGZ1bmN0aW9uIGZvciBkb3dubG9hZGluZyBUQ0dBIGdlbmUgZXhwcmVzc2lvbiBkYXRhLiANCg0KRm9yIG1vcmUgZGV0YWlsZWQgZG9jdW1lbnRhdGlvbiwgcmVmZXIgdG8gYDIuIERpZmZlcmVudGlhbCBHZW5lIEV4cHJlc3Npb24gQW5hbHlzaXMgLSBUQ0dBLlJtZGAuDQoNCmBgYHtyfQ0KcXVlcnlfYW5kX2ZpbHRlcl9zYW1wbGVzIDwtIGZ1bmN0aW9uKHByb2plY3QpIHsNCiAgcXVlcnlfdHVtb3IgPC0gR0RDcXVlcnkoDQogICAgcHJvamVjdCA9IHByb2plY3QsDQogICAgZGF0YS5jYXRlZ29yeSA9ICJUcmFuc2NyaXB0b21lIFByb2ZpbGluZyIsDQogICAgZGF0YS50eXBlID0gIkdlbmUgRXhwcmVzc2lvbiBRdWFudGlmaWNhdGlvbiIsDQogICAgZXhwZXJpbWVudGFsLnN0cmF0ZWd5ID0gIlJOQS1TZXEiLA0KICAgIHdvcmtmbG93LnR5cGUgPSAiU1RBUiAtIENvdW50cyIsDQogICAgYWNjZXNzID0gIm9wZW4iLA0KICAgIHNhbXBsZS50eXBlID0gIlByaW1hcnkgVHVtb3IiDQogICkNCiAgdHVtb3IgPC0gZ2V0UmVzdWx0cyhxdWVyeV90dW1vcikNCg0KICBxdWVyeV9ub3JtYWwgPC0gR0RDcXVlcnkoDQogICAgcHJvamVjdCA9IHByb2plY3QsDQogICAgZGF0YS5jYXRlZ29yeSA9ICJUcmFuc2NyaXB0b21lIFByb2ZpbGluZyIsDQogICAgZGF0YS50eXBlID0gIkdlbmUgRXhwcmVzc2lvbiBRdWFudGlmaWNhdGlvbiIsDQogICAgZXhwZXJpbWVudGFsLnN0cmF0ZWd5ID0gIlJOQS1TZXEiLA0KICAgIHdvcmtmbG93LnR5cGUgPSAiU1RBUiAtIENvdW50cyIsDQogICAgYWNjZXNzID0gIm9wZW4iLA0KICAgIHNhbXBsZS50eXBlID0gIlNvbGlkIFRpc3N1ZSBOb3JtYWwiDQogICkNCiAgbm9ybWFsIDwtIGdldFJlc3VsdHMocXVlcnlfbm9ybWFsKQ0KDQogIHN1Ym1pdHRlcl9pZHMgPC0gaW5uZXJfam9pbih0dW1vciwgbm9ybWFsLCBieSA9ICJjYXNlcy5zdWJtaXR0ZXJfaWQiKSAlPiUNCiAgICBkcGx5cjo6c2VsZWN0KGNhc2VzLnN1Ym1pdHRlcl9pZCkNCiAgdHVtb3IgPC0gdHVtb3IgJT4lDQogICAgZHBseXI6OmZpbHRlcihjYXNlcy5zdWJtaXR0ZXJfaWQgJWluJSBzdWJtaXR0ZXJfaWRzJGNhc2VzLnN1Ym1pdHRlcl9pZCkNCiAgbm9ybWFsIDwtIG5vcm1hbCAlPiUNCiAgICBkcGx5cjo6ZmlsdGVyKGNhc2VzLnN1Ym1pdHRlcl9pZCAlaW4lIHN1Ym1pdHRlcl9pZHMkY2FzZXMuc3VibWl0dGVyX2lkKQ0KDQogIHNhbXBsZXMgPC0gcmJpbmQodHVtb3IsIG5vcm1hbCkNCiAgdW5pcXVlKHNhbXBsZXMkc2FtcGxlX3R5cGUpDQoNCiAgcXVlcnlfcHJvamVjdCA8LSBHRENxdWVyeSgNCiAgICBwcm9qZWN0ID0gcHJvamVjdCwNCiAgICBkYXRhLmNhdGVnb3J5ID0gIlRyYW5zY3JpcHRvbWUgUHJvZmlsaW5nIiwNCiAgICBkYXRhLnR5cGUgPSAiR2VuZSBFeHByZXNzaW9uIFF1YW50aWZpY2F0aW9uIiwNCiAgICBleHBlcmltZW50YWwuc3RyYXRlZ3kgPSAiUk5BLVNlcSIsDQogICAgd29ya2Zsb3cudHlwZSA9ICJTVEFSIC0gQ291bnRzIiwNCiAgICBhY2Nlc3MgPSAib3BlbiIsDQogICAgc2FtcGxlLnR5cGUgPSBjKCJTb2xpZCBUaXNzdWUgTm9ybWFsIiwgIlByaW1hcnkgVHVtb3IiKSwNCiAgICBiYXJjb2RlID0gYXMubGlzdChzYW1wbGVzJHNhbXBsZS5zdWJtaXR0ZXJfaWQpDQogICkNCg0KICAjIElmIHRoaXMgaXMgeW91ciBmaXJzdCB0aW1lIHJ1bm5pbmcgdGhpcyBub3RlYm9vayAoaS5lLiwgeW91IGhhdmUgbm90IHlldCBkb3dubG9hZGVkIHRoZSByZXN1bHRzIG9mIHRoZSBxdWVyeSBpbiB0aGUgcHJldmlvdXMgYmxvY2spLA0KICAjIHVuY29tbWVudCB0aGUgbGluZSBiZWxvdw0KDQogICMgR0RDZG93bmxvYWQocXVlcnlfcHJvamVjdCkNCg0KICByZXR1cm4obGlzdChzYW1wbGVzID0gc2FtcGxlcywgcXVlcnlfcHJvamVjdCA9IHF1ZXJ5X3Byb2plY3QpKQ0KfQ0KYGBgDQoNCkRvd25sb2FkIHRoZSBUQ0dBIGdlbmUgZXhwcmVzc2lvbiBkYXRhIGZvciBjb2xvcmVjdGFsIGNhbmNlciAoVENHQS1DT0FEKS4NCg0KYGBge3IsIGVjaG8gPSBUUlVFLCBtZXNzYWdlID0gRkFMU0UsIHJlc3VsdHM9ImhpZGUifQ0KcHJvamVjdHMgPC0gYygiVENHQS1DT0FEIikNCg0Kd2l0aF9yZXN1bHRzX3Byb2plY3RzIDwtIGMoKQ0KDQpzYW1wbGVzIDwtIGxpc3QoKQ0KcHJvamVjdF9kYXRhIDwtIGxpc3QoKQ0KDQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgcmVzdWx0IDwtIHRyeUNhdGNoKA0KICAgIHsNCiAgICAgIHJlc3VsdCA8LSBxdWVyeV9hbmRfZmlsdGVyX3NhbXBsZXMocHJvamVjdCkNCiAgICAgIHNhbXBsZXNbW3Byb2plY3RdXSA8LSByZXN1bHQkc2FtcGxlcw0KICAgICAgcHJvamVjdF9kYXRhW1twcm9qZWN0XV0gPC0gcmVzdWx0JHF1ZXJ5X3Byb2plY3QNCg0KICAgICAgd2l0aF9yZXN1bHRzX3Byb2plY3RzIDwtIGMod2l0aF9yZXN1bHRzX3Byb2plY3RzLCBwcm9qZWN0KQ0KICAgIH0sDQogICAgZXJyb3IgPSBmdW5jdGlvbihlKSB7DQoNCiAgICB9DQogICkNCn0NCmBgYA0KDQpSdW5uaW5nIHRoZSBjb2RlIGJsb2NrIGFib3ZlIHNob3VsZCBnZW5lcmF0ZSBhbmQgcG9wdWxhdGUgYSBkaXJlY3RvcnkgbmFtZWQgYEdEQ2RhdGFgLg0KDQojIyBJSUkuIERhdGEgcHJlcHJvY2Vzc2luZw0KDQpDb25zdHJ1Y3QgdGhlIFJOQS1zZXEgY291bnQgbWF0cml4IGZvciBlYWNoIGNhbmNlciB0eXBlLg0KDQpgYGB7ciwgZWNobyA9IFRSVUUsIG1lc3NhZ2UgPSBGQUxTRSwgcmVzdWx0cz0iaGlkZSJ9DQp0Y2dhX2RhdGEgPC0gbGlzdCgpDQp0Y2dhX21hdHJpeCA8LSBsaXN0KCkNCg0KcHJvamVjdHMgPC0gd2l0aF9yZXN1bHRzX3Byb2plY3RzDQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgdGNnYV9kYXRhW1twcm9qZWN0XV0gPC0gR0RDcHJlcGFyZShwcm9qZWN0X2RhdGFbW3Byb2plY3RdXSwgc3VtbWFyaXplZEV4cGVyaW1lbnQgPSBUUlVFKQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogIGNvdW50X21hdHJpeCA8LSBhc3NheSh0Y2dhX2RhdGFbW3Byb2plY3RdXSwgInVuc3RyYW5kZWQiKQ0KDQogICMgUmVtb3ZlIGR1cGxpY2F0ZSBlbnRyaWVzDQogIGNvdW50X21hdHJpeF9kZiA8LSBkYXRhLmZyYW1lKGNvdW50X21hdHJpeCkNCiAgY291bnRfbWF0cml4X2RmIDwtIGNvdW50X21hdHJpeF9kZlshZHVwbGljYXRlZChjb3VudF9tYXRyaXhfZGYpLCBdDQogIGNvdW50X21hdHJpeCA8LSBkYXRhLm1hdHJpeChjb3VudF9tYXRyaXhfZGYpDQogIHJvd25hbWVzKGNvdW50X21hdHJpeCkgPC0gY2xlYW5pZChyb3duYW1lcyhjb3VudF9tYXRyaXgpKQ0KICBjb3VudF9tYXRyaXggPC0gY291bnRfbWF0cml4WyEoZHVwbGljYXRlZChyb3duYW1lcyhjb3VudF9tYXRyaXgpKSB8IGR1cGxpY2F0ZWQocm93bmFtZXMoY291bnRfbWF0cml4KSwgZnJvbUxhc3QgPSBUUlVFKSksIF0NCg0KICB0Y2dhX21hdHJpeFtbcHJvamVjdF1dIDwtIGNvdW50X21hdHJpeA0KfQ0KYGBgDQpGb3JtYXQgdGhlIGBzYW1wbGVzYCB0YWJsZSBzbyB0aGF0IGl0IGNhbiBiZSBmZWQgYXMgaW5wdXQgdG8gREVTZXEyLg0KDQpgYGB7cn0NCmZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICByb3duYW1lcyhzYW1wbGVzW1twcm9qZWN0XV0pIDwtIHNhbXBsZXNbW3Byb2plY3RdXSRjYXNlcw0KICBzYW1wbGVzW1twcm9qZWN0XV0gPC0gc2FtcGxlc1tbcHJvamVjdF1dICU+JQ0KICAgIGRwbHlyOjpzZWxlY3QoY2FzZSA9ICJjYXNlcy5zdWJtaXR0ZXJfaWQiLCB0eXBlID0gInNhbXBsZV90eXBlIikNCiAgc2FtcGxlc1tbcHJvamVjdF1dJHR5cGUgPC0gc3RyX3JlcGxhY2Uoc2FtcGxlc1tbcHJvamVjdF1dJHR5cGUsICJTb2xpZCBUaXNzdWUgTm9ybWFsIiwgIm5vcm1hbCIpDQogIHNhbXBsZXNbW3Byb2plY3RdXSR0eXBlIDwtIHN0cl9yZXBsYWNlKHNhbXBsZXNbW3Byb2plY3RdXSR0eXBlLCAiUHJpbWFyeSBUdW1vciIsICJ0dW1vciIpDQp9DQpgYGANCg0KREVTZXEyIHJlcXVpcmVzIHRoZSByb3cgbmFtZXMgb2YgYHNhbXBsZXNgIHNob3VsZCBiZSBpZGVudGljYWwgdG8gdGhlIGNvbHVtbiBuYW1lcyBvZiBgY291bnRfbWF0cml4YC4NCg0KYGBge3IsIGVjaG8gPSBUUlVFLCByZXN1bHRzPSJoaWRlIn0NCmZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICBjb2xuYW1lcyh0Y2dhX21hdHJpeFtbcHJvamVjdF1dKSA8LSBnc3ViKHggPSBjb2xuYW1lcyh0Y2dhX21hdHJpeFtbcHJvamVjdF1dKSwgcGF0dGVybiA9ICJcXC4iLCByZXBsYWNlbWVudCA9ICItIikNCiAgdGNnYV9tYXRyaXhbW3Byb2plY3RdXSA8LSB0Y2dhX21hdHJpeFtbcHJvamVjdF1dWywgcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dKV0NCg0KICAjIFNhbml0eSBjaGVjaw0KICBwcmludChhbGwoY29sbmFtZXModGNnYV9tYXRyaXhbW3Byb2plY3RdXSkgPT0gcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dKSkpDQp9DQpgYGANCg0KIyMgSVYuIERpZmZlcmVudGlhbCBnZW5lIGV4cHJlc3Npb24gYW5hbHlzaXMNCg0KRm9yIG1vcmUgZGV0YWlsZWQgZG9jdW1lbnRhdGlvbiBvbiBvYnRhaW5pbmcgdGhlIGdlbmUgc2V0LCByZWZlciB0byBgNy4gRGlmZmVyZW50aWFsIEdlbmUgRXhwcmVzc2lvbiBBbmFseXNpcyAtIFRDR0EgLSBQYW4tY2FuY2VyIC0gVW5pcXVlIEdlbmVzLlJtZGAuDQoNCmBgYHtyfQ0KUkNEZGIgPC0gInRlbXAvdW5pcXVlX2dlbmVzL25lY3JvcHRvc2lzX2ZlcnJvcHRvc2lzX3B5cm9wdG9zaXMvIg0KYGBgDQoNCldyaXRlIHV0aWxpdHkgZnVuY3Rpb25zIGZvciBmaWx0ZXJpbmcgdGhlIGdlbmUgc2V0cywgcGVyZm9ybWluZyBkaWZmZXJlbnRpYWwgZ2VuZSBleHByZXNzaW9uIGFuYWx5c2lzLCBwbG90dGluZyB0aGUgcmVzdWx0cywgYW5kIHBlcmZvcm1pbmcgdmFyaWFuY2Utc3RhYmlsaXppbmcgdHJhbnNmb3JtYXRpb24uDQoNCmBgYHtyfQ0KZmlsdGVyX2dlbmVfc2V0X2FuZF9wZXJmb3JtX2RnZWEgPC0gZnVuY3Rpb24oZ2VuZXMpIHsNCiAgdGNnYV9yY2QgPC0gbGlzdCgpDQoNCiAgZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogICAgcm93bmFtZXMoZ2VuZXMpIDwtIGdlbmVzJGdlbmVfaWQNCiAgICB0Y2dhX3JjZFtbcHJvamVjdF1dIDwtIHRjZ2FfbWF0cml4W1twcm9qZWN0XV1bcm93bmFtZXModGNnYV9tYXRyaXhbW3Byb2plY3RdXSkgJWluJSBnZW5lcyRnZW5lX2lkLCBdDQogICAgdGNnYV9yY2RbW3Byb2plY3RdXSA8LSB0Y2dhX3JjZFtbcHJvamVjdF1dWywgcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dKV0NCiAgfQ0KDQogIGRkc19yY2QgPC0gbGlzdCgpDQogIHJlc19yY2QgPC0gbGlzdCgpDQoNCiAgZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogICAgcHJpbnQocHJvamVjdCkNCiAgICBwcmludCgiPT09PT09PT09PT09PSIpDQogICAgZGRzIDwtIERFU2VxRGF0YVNldEZyb21NYXRyaXgoDQogICAgICBjb3VudERhdGEgPSB0Y2dhX3JjZFtbcHJvamVjdF1dLA0KICAgICAgY29sRGF0YSA9IHNhbXBsZXNbW3Byb2plY3RdXSwNCiAgICAgIGRlc2lnbiA9IH50eXBlDQogICAgKQ0KICAgIGRkcyA8LSBmaWx0ZXJfZ2VuZXMoZGRzLCBtaW5fY291bnQgPSAxMCkNCiAgICBkZHMkdHlwZSA8LSByZWxldmVsKGRkcyR0eXBlLCByZWYgPSAibm9ybWFsIikNCiAgICBkZHNfcmNkW1twcm9qZWN0XV0gPC0gREVTZXEoZGRzKQ0KICAgIHJlc19yY2RbW3Byb2plY3RdXSA8LSByZXN1bHRzKGRkc19yY2RbW3Byb2plY3RdXSkNCiAgfQ0KDQogIGRlc2VxLmJibC5kYXRhIDwtIGxpc3QoKQ0KDQogIGZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICAgIGRlc2VxLnJlc3VsdHMgPC0gcmVzX3JjZFtbcHJvamVjdF1dDQogICAgZGVzZXEuYmJsLmRhdGFbW3Byb2plY3RdXSA8LSBkYXRhLmZyYW1lKA0KICAgICAgcm93Lm5hbWVzID0gcm93bmFtZXMoZGVzZXEucmVzdWx0cyksDQogICAgICBiYXNlTWVhbiA9IGRlc2VxLnJlc3VsdHMkYmFzZU1lYW4sDQogICAgICBsb2cyRm9sZENoYW5nZSA9IGRlc2VxLnJlc3VsdHMkbG9nMkZvbGRDaGFuZ2UsDQogICAgICBsZmNTRSA9IGRlc2VxLnJlc3VsdHMkbGZjU0UsDQogICAgICBzdGF0ID0gZGVzZXEucmVzdWx0cyRzdGF0LA0KICAgICAgcHZhbHVlID0gZGVzZXEucmVzdWx0cyRwdmFsdWUsDQogICAgICBwYWRqID0gZGVzZXEucmVzdWx0cyRwYWRqLA0KICAgICAgY2FuY2VyX3R5cGUgPSBwcm9qZWN0LA0KICAgICAgZ2VuZV9zeW1ib2wgPSBnZW5lc1tyb3duYW1lcyhkZXNlcS5yZXN1bHRzKSwgImdlbmUiXQ0KICAgICkNCiAgfQ0KDQogIGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkIDwtIGJpbmRfcm93cyhkZXNlcS5iYmwuZGF0YSkNCiAgZGVzZXEuYmJsLmRhdGEuY29tYmluZWQgPC0gZHBseXI6OmZpbHRlcihkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCwgYWJzKGxvZzJGb2xkQ2hhbmdlKSA+PSAxLjUgJiBwYWRqIDwgMC4wNSkNCg0KICByZXR1cm4oZGVzZXEuYmJsLmRhdGEuY29tYmluZWQpDQp9DQpgYGANCg0KYGBge3J9DQpwbG90X2RnZWEgPC0gZnVuY3Rpb24oZGVzZXEuYmJsLmRhdGEuY29tYmluZWQpIHsNCiAgc2l6ZXMgPC0gYygiPDEwXi0xNSIgPSA0LCAiMTBeLTEwIiA9IDMsICIxMF4tNSIgPSAyLCAiMC4wNSIgPSAxKQ0KDQogIGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkIDwtIGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkICU+JQ0KICAgIG11dGF0ZShmZHJfY2F0ZWdvcnkgPSBjdXQocGFkaiwNCiAgICAgIGJyZWFrcyA9IGMoLUluZiwgMWUtMTUsIDFlLTEwLCAxZS01LCAwLjA1KSwNCiAgICAgIGxhYmVscyA9IGMoIjwxMF4tMTUiLCAiMTBeLTEwIiwgIjEwXi01IiwgIjAuMDUiKSwNCiAgICAgIHJpZ2h0ID0gRkFMU0UNCiAgICApKQ0KDQogIHRvcF9nZW5lcyA8LSBkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCAlPiUNCiAgICBncm91cF9ieShjYW5jZXJfdHlwZSkgJT4lDQogICAgbXV0YXRlKHJhbmsgPSByYW5rKC1hYnMobG9nMkZvbGRDaGFuZ2UpKSkgJT4lDQogICAgZHBseXI6OmZpbHRlcihyYW5rIDw9IDEwKSAlPiUNCiAgICB1bmdyb3VwKCkNCg0KICBnZ3Bsb3QodG9wX2dlbmVzLCBhZXMoeSA9IGNhbmNlcl90eXBlLCB4ID0gZ2VuZV9zeW1ib2wsIHNpemUgPSBmZHJfY2F0ZWdvcnksIGZpbGwgPSBsb2cyRm9sZENoYW5nZSkpICsNCiAgICBnZW9tX3BvaW50KGFscGhhID0gMC41LCBzaGFwZSA9IDIxLCBjb2xvciA9ICJibGFjayIpICsNCiAgICBzY2FsZV9zaXplX21hbnVhbCh2YWx1ZXMgPSBzaXplcykgKw0KICAgIHNjYWxlX2ZpbGxfZ3JhZGllbnQyKGxvdyA9ICJibHVlIiwgbWlkID0gIndoaXRlIiwgaGlnaCA9ICJyZWQiLCBsaW1pdHMgPSBjKG1pbihkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCRsb2cyRm9sZENoYW5nZSksIG1heChkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCRsb2cyRm9sZENoYW5nZSkpKSArDQogICAgdGhlbWVfbWluaW1hbCgpICsNCiAgICB0aGVtZSgNCiAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemUgPSA5LCBhbmdsZSA9IDkwLCBoanVzdCA9IDEpDQogICAgKSArDQogICAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gImJvdHRvbSIpICsNCiAgICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAiYm90dG9tIikgKw0KICAgIGxhYnMoc2l6ZSA9ICJBZGp1c3RlZCBwLXZhbHVlIiwgZmlsbCA9ICJsb2cyIEZDIiwgeSA9ICJDYW5jZXIgdHlwZSIsIHggPSAiR2VuZSIpDQp9DQpgYGANCg0KYGBge3J9DQpwZXJmb3JtX3ZzZCA8LSBmdW5jdGlvbihnZW5lcykgew0KICB0Y2dhX3JjZCA8LSBsaXN0KCkNCg0KICBmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgICByb3duYW1lcyhnZW5lcykgPC0gZ2VuZXMkZ2VuZV9pZA0KICAgIHRjZ2FfcmNkW1twcm9qZWN0XV0gPC0gdGNnYV9tYXRyaXhbW3Byb2plY3RdXVtyb3duYW1lcyh0Y2dhX21hdHJpeFtbcHJvamVjdF1dKSAlaW4lIGdlbmVzJGdlbmVfaWQsIF0NCiAgICB0Y2dhX3JjZFtbcHJvamVjdF1dIDwtIHRjZ2FfcmNkW1twcm9qZWN0XV1bLCByb3duYW1lcyhzYW1wbGVzW1twcm9qZWN0XV0pXQ0KICB9DQoNCiAgdnNkX3JjZCA8LSBsaXN0KCkNCg0KICBmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgICBwcmludChwcm9qZWN0KQ0KICAgIHByaW50KCI9PT09PT09PT09PT09IikNCiAgICBkZHMgPC0gREVTZXFEYXRhU2V0RnJvbU1hdHJpeCgNCiAgICAgIGNvdW50RGF0YSA9IHRjZ2FfcmNkW1twcm9qZWN0XV0sDQogICAgICBjb2xEYXRhID0gc2FtcGxlc1tbcHJvamVjdF1dLA0KICAgICAgZGVzaWduID0gfnR5cGUNCiAgICApDQogICAgZGRzIDwtIGZpbHRlcl9nZW5lcyhkZHMsIG1pbl9jb3VudCA9IDEwKQ0KDQogICAgIyBQZXJmb3JtIHZhcmlhbmNlIHN0YWJpbGl6YXRpb24NCiAgICBkZHMgPC0gZXN0aW1hdGVTaXplRmFjdG9ycyhkZHMpDQogICAgbnN1YiA8LSBzdW0ocm93TWVhbnMoY291bnRzKGRkcywgbm9ybWFsaXplZCA9IFRSVUUpKSA+IDEwKQ0KICAgIHZzZCA8LSB2c3QoZGRzLCBuc3ViID0gbnN1YikNCiAgICB2c2RfcmNkW1twcm9qZWN0XV0gPC0gYXNzYXkodnNkKQ0KICB9DQoNCiAgcmV0dXJuKHZzZF9yY2QpDQp9DQpgYGANCg0KDQojIyMjIE5lY3JvcHRvc2lzDQoNCkZldGNoIHRoZSBnZW5lIHNldCBvZiBpbnRlcmVzdC4NCg0KYGBge3J9DQpnZW5lcyA8LSByZWFkLmNzdihwYXN0ZTAoUkNEZGIsICJOZWNyb3B0b3Npcy5jc3YiKSkNCnByaW50KGdlbmVzKQ0KZ2VuZXMkZ2VuZV9pZCA8LSBjbGVhbmlkKGdlbmVzJGdlbmVfaWQpDQpnZW5lcyA8LSBkaXN0aW5jdChnZW5lcywgZ2VuZV9pZCwgLmtlZXBfYWxsID0gVFJVRSkNCmdlbmVzIDwtIHN1YnNldChnZW5lcywgZ2VuZV9pZCAhPSAiIikNCmdlbmVzDQpgYGANCg0KRmlsdGVyIHRoZSBnZW5lcyB0byBpbmNsdWRlIG9ubHkgdGhvc2UgaW4gdGhlIGdlbmUgc2V0IG9mIGludGVyZXN0LCBhbmQgdGhlbiBwZXJmb3JtIGRpZmZlcmVudGlhbCBnZW5lIGV4cHJlc3Npb24gYW5hbHlzaXMuDQoNCmBgYHtyfQ0KZGVzZXEuYmJsLmRhdGEuY29tYmluZWQgPC0gZmlsdGVyX2dlbmVfc2V0X2FuZF9wZXJmb3JtX2RnZWEoZ2VuZXMpDQpkZXNlcS5iYmwuZGF0YS5jb21iaW5lZA0KYGBgDQoNClBsb3QgdGhlIHJlc3VsdHMuDQoNCmBgYHtyfQ0KcGxvdF9kZ2VhKGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkKQ0KYGBgDQpQZXJmb3JtIHZhcmlhbmNlLXN0YWJpbGl6aW5nIHRyYW5zZm9ybWF0aW9uIGZvciBmdXJ0aGVyIGRvd25zdHJlYW0gYW5hbHlzaXMgKGkuZS4sIGZvciBzdXJ2aXZhbCBhbmFseXNpcykuDQoNCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQ0KdnNkIDwtIHBlcmZvcm1fdnNkKGdlbmVzKQ0KYGBgDQoNCiMjIFYuIERvd25sb2FkaW5nIHRoZSBjbGluaWNhbCBkYXRhDQoNCkRvd25sb2FkIGNsaW5pY2FsIGRhdGEgZnJvbSBUQ0dBLCBhbmQgcGVyZm9ybSBzb21lIHByZXByb2Nlc3Npbmc6DQotIFRoZSBgZGVjZWFzZWRgIGNvbHVtbiBzaG91bGQgYmUgYEZBTFNFYCBpZiB0aGUgcGF0aWVudCBpcyBhbGl2ZSBhbmQgYFRSVUVgIG90aGVyd2lzZQ0KLSBUaGUgYG92ZXJhbGxfc3Vydml2YWxgIGNvbHVtbiBzaG91bGQgcmVmbGVjdCB0aGUgZm9sbG93LXVwIHRpbWUgaWYgdGhlIHBhdGllbnQgaXMgYWxpdmUgYW5kIHRoZSBkYXlzIHRvIGRlYXRoIG90aGVyd2lzZQ0KDQpgYGB7cn0NCmRvd25sb2FkX2NsaW5pY2FsX2RhdGEgPC0gZnVuY3Rpb24ocHJvamVjdCkgew0KICBjbGluaWNhbF9kYXRhIDwtIEdEQ3F1ZXJ5X2NsaW5pYyhwcm9qZWN0KQ0KICBjbGluaWNhbF9kYXRhJGRlY2Vhc2VkIDwtIGlmZWxzZShjbGluaWNhbF9kYXRhJHZpdGFsX3N0YXR1cyA9PSAiQWxpdmUiLCBGQUxTRSwgVFJVRSkNCiAgY2xpbmljYWxfZGF0YSRvdmVyYWxsX3N1cnZpdmFsIDwtIGlmZWxzZShjbGluaWNhbF9kYXRhJHZpdGFsX3N0YXR1cyA9PSAiQWxpdmUiLA0KICAgIGNsaW5pY2FsX2RhdGEkZGF5c190b19sYXN0X2ZvbGxvd191cCwNCiAgICBjbGluaWNhbF9kYXRhJGRheXNfdG9fZGVhdGgNCiAgKQ0KDQogIHJldHVybihjbGluaWNhbF9kYXRhKQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KdGNnYV9jbGluaWNhbCA8LSBsaXN0KCkNCmZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICB0Y2dhX2NsaW5pY2FsW1twcm9qZWN0XV0gPC0gZG93bmxvYWRfY2xpbmljYWxfZGF0YShwcm9qZWN0KQ0KfQ0KYGBgDQoNCiMjIFZJLiBQZXJmb3JtaW5nIHN1cnZpdmFsIGFuYWx5c2lzDQoNCldyaXRlIHV0aWxpdHkgZnVuY3Rpb25zIGZvciBwZXJmb3JtaW5nIHN1cnZpdmFsIGFuYWx5c2lzLg0KDQoNCmBgYHtyfQ0KY29uc3RydWN0X2dlbmVfZGYgPC0gZnVuY3Rpb24oZ2VuZV9vZl9pbnRlcmVzdCwgcHJvamVjdCkgew0KICBnZW5lX2RmIDwtIHZzZFtbcHJvamVjdF1dICU+JQ0KICAgIGFzLmRhdGEuZnJhbWUoKSAlPiUNCiAgICByb3duYW1lc190b19jb2x1bW4odmFyID0gImdlbmVfaWQiKSAlPiUNCiAgICBnYXRoZXIoa2V5ID0gImNhc2VfaWQiLCB2YWx1ZSA9ICJjb3VudHMiLCAtZ2VuZV9pZCkgJT4lDQogICAgbGVmdF9qb2luKC4sIGdlbmVzLCBieSA9ICJnZW5lX2lkIikgJT4lDQogICAgZHBseXI6OmZpbHRlcihnZW5lID09IGdlbmVfb2ZfaW50ZXJlc3QpICU+JQ0KICAgIGRwbHlyOjpmaWx0ZXIoY2FzZV9pZCAlaW4lIHJvd25hbWVzKHNhbXBsZXNbW3Byb2plY3RdXSAlPiUgZHBseXI6OmZpbHRlcih0eXBlID09ICJub3JtYWwiKSkpDQoNCiAgcTEgPC0gcXVhbnRpbGUoZ2VuZV9kZiRjb3VudHMsIHByb2JzID0gMC4yNSkNCiAgcTMgPC0gcXVhbnRpbGUoZ2VuZV9kZiRjb3VudHMsIHByb2JzID0gMC43NSkNCiAgZ2VuZV9kZiRzdHJhdGEgPC0gaWZlbHNlKGdlbmVfZGYkY291bnRzID49IHEzLCAiSElHSCIsIGlmZWxzZShnZW5lX2RmJGNvdW50cyA8PSBxMSwgIkxPVyIsICJNSURETEUiKSkNCiAgZ2VuZV9kZiA8LSBnZW5lX2RmICU+JSBkcGx5cjo6ZmlsdGVyKHN0cmF0YSAlaW4lIGMoIkxPVyIsICJISUdIIikpDQogIGdlbmVfZGYkY2FzZV9pZCA8LSBwYXN0ZTAoc2FwcGx5KHN0cnNwbGl0KGFzLmNoYXJhY3RlcihnZW5lX2RmJGNhc2VfaWQpLCAiLSIpLCBgW2AsIDEpLCAnLScsDQogICAgICAgICAgICAgICAgICAgICAgICAgIHNhcHBseShzdHJzcGxpdChhcy5jaGFyYWN0ZXIoZ2VuZV9kZiRjYXNlX2lkKSwgIi0iKSwgYFtgLCAyKSwgJy0nLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgc2FwcGx5KHN0cnNwbGl0KGFzLmNoYXJhY3RlcihnZW5lX2RmJGNhc2VfaWQpLCAiLSIpLCBgW2AsIDMpKQ0KICBnZW5lX2RmIDwtIG1lcmdlKGdlbmVfZGYsIHRjZ2FfY2xpbmljYWxbW3Byb2plY3RdXSwgYnkueCA9ICJjYXNlX2lkIiwgYnkueSA9ICJzdWJtaXR0ZXJfaWQiKQ0KICANCiAgcmV0dXJuKGdlbmVfZGYpDQp9DQpgYGANCg0KYGBge3J9DQpjb21wdXRlX3N1cml2YWxfZml0IDwtIGZ1bmN0aW9uKGdlbmVfZGYpIHsNCiAgcmV0dXJuIChzdXJ2Zml0KFN1cnYob3ZlcmFsbF9zdXJ2aXZhbCwgZGVjZWFzZWQpIH4gc3RyYXRhLCBkYXRhID0gZ2VuZV9kZikpDQp9DQpgYGANCg0KYGBge3J9DQpjb21wdXRlX2NveCA8LSBmdW5jdGlvbihnZW5lX2RmKSB7DQogIHJldHVybiAoY294cGgoU3VydihvdmVyYWxsX3N1cnZpdmFsLCBkZWNlYXNlZCkgfiBzdHJhdGEsIGRhdGE9Z2VuZV9kZikpDQp9DQpgYGANCg0KYGBge3J9DQpwbG90X3N1cnZpdmFsIDwtIGZ1bmN0aW9uKGZpdCkgew0KICByZXR1cm4oZ2dzdXJ2cGxvdChmaXQsDQogICAgZGF0YSA9IGdlbmVfZGYsDQogICAgcHZhbCA9IFQsDQogICAgcmlzay50YWJsZSA9IFQsDQogICAgcmlzay50YWJsZS5oZWlnaHQgPSAwLjMNCiAgKSkNCn0NCmBgYA0KDQpgYGB7cn0NCmNvbXB1dGVfc3Vydml2YWxfZGlmZiA8LSBmdW5jdGlvbihnZW5lX2RmKSB7DQogIHJldHVybihzdXJ2ZGlmZihTdXJ2KG92ZXJhbGxfc3Vydml2YWwsIGRlY2Vhc2VkKSB+IHN0cmF0YSwgZGF0YSA9IGdlbmVfZGYpKQ0KfQ0KYGBgDQoNClBlcmZvcm0gc3Vydml2YWwgYW5hbHlzaXMgYnkgdGVzdGluZyBmb3IgdGhlIGRpZmZlcmVuY2UgaW4gdGhlIEthcGxhbi1NZWllciBjdXJ2ZXMgdXNpbmcgdGhlIEctcmhvIGZhbWlseSBvZiBIYXJyaW5ndG9uIGFuZCBGbGVtaW5nIHRlc3RzOiBodHRwczovL3JkcnIuaW8vY3Jhbi9zdXJ2aXZhbC9tYW4vc3VydmRpZmYuaHRtbA0KDQpNTEtMIGlzIHRoZSBwcmltYXJ5IGV4ZWN1dG9yIG9mIG5lY3JvcHRvc2lzLg0KDQpgYGB7cn0NCnNpZ25pZmljYW50X3Byb2plY3RzIDwtIGMoKQ0Kc2lnbmlmaWNhbnRfZ2VuZXMgPC0gYygpDQoNCmN0ciA8LSAxDQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgZm9yIChnZW5lIGluIGMoIk1MS0wiLCBnZW5lcyRnZW5lKSkgew0KICAgIGNhdChwcm9qZWN0LCBnZW5lLCAiXG5cbiIpDQogICAgZXJyb3IgPC0gdHJ5Q2F0Y2ggKA0KICAgICAgew0KICAgICAgICBnZW5lX2RmIDwtIGNvbnN0cnVjdF9nZW5lX2RmKGdlbmUsIHByb2plY3QpDQogICAgICB9LA0KICAgICAgZXJyb3IgPSBmdW5jdGlvbihlKSB7DQogICAgICAgIGNhdCgiXG5cbj09PT09PT09PT09PT09PT09PT09PT09PT09PT1cblxuIikNCiAgICAgICAgZQ0KICAgICAgfQ0KICAgICkNCiAgICANCiAgICBpZihpbmhlcml0cyhlcnJvciwgImVycm9yIikpIG5leHQNCg0KICAgIGlmIChucm93KGdlbmVfZGYpID4gMCkgew0KICAgICAgZml0IDwtIGNvbXB1dGVfc3VyaXZhbF9maXQoZ2VuZV9kZikNCiAgICAgIHRyeUNhdGNoICgNCiAgICAgICAgew0KICAgICAgICAgIHN1cnZpdmFsIDwtIGNvbXB1dGVfc3Vydml2YWxfZGlmZihnZW5lX2RmKQ0KICAgICAgICAgIGNveCA8LSBjb21wdXRlX2NveChnZW5lX2RmKQ0KICAgICAgICAgIHByaW50KGN0cikNCiAgICAgICAgICBjdHIgPC0gY3RyICsgMQ0KICAgICAgICAgIHByaW50KHN1cnZpdmFsKQ0KICAgICAgICAgIGNhdCgiXG4iKQ0KICAgICAgICAgIHByaW50KGNveCkNCiAgICAgICAgICBwcmludChwbG90X3N1cnZpdmFsKGZpdCkpDQogICAgICAgICAgaWYgKHBjaGlzcShzdXJ2aXZhbCRjaGlzcSwgbGVuZ3RoKHN1cnZpdmFsJG4pLTEsIGxvd2VyLnRhaWwgPSBGQUxTRSkgPCAwLjA1KSB7DQogICAgICAgICAgICBzaWduaWZpY2FudF9wcm9qZWN0cyA8LSBjKHNpZ25pZmljYW50X3Byb2plY3RzLCBwcm9qZWN0KQ0KICAgICAgICAgICAgc2lnbmlmaWNhbnRfZ2VuZXMgPC0gYyhzaWduaWZpY2FudF9nZW5lcywgZ2VuZSkNCiAgICAgICAgICB9DQogICAgICAgIH0sDQogICAgICAgIGVycm9yID0gZnVuY3Rpb24oZSkgew0KICAgICAgICB9DQogICAgICApDQogICAgICANCiAgICB9DQogICAgDQogICAgY2F0KCJcblxuPT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuXG4iKQ0KICB9DQp9DQpgYGANCg0KRGlzcGxheSB0aGUgcmVzdWx0cyBvbmx5IGZvciBnZW5lcyB3aGVyZSBhIHNpZ25pZmljYW50IGRpZmZlcmVuY2UgaW4gc3Vydml2YWwgaGFzIGJlZW4gcmVwb3J0ZWQuDQoNCmBgYHtyfQ0Kc2lnbmlmaWNhbnRfZ2VuZXMNCmBgYA0KDQpgYGB7cn0NCm51bV9zaWduaWZpY2FudF9nZW5lcyA8LSBsZW5ndGgoc2lnbmlmaWNhbnRfZ2VuZXMpDQoNCmlmIChudW1fc2lnbmlmaWNhbnRfZ2VuZXMgPiAwKSB7DQogIGZvciAoaSBpbiAxIDogbnVtX3NpZ25pZmljYW50X2dlbmVzKSB7DQogICAgcHJvamVjdCA8LSBzaWduaWZpY2FudF9wcm9qZWN0c1tbaV1dDQogICAgZ2VuZSA8LSBzaWduaWZpY2FudF9nZW5lc1tbaV1dDQogICAgDQogICAgY2F0KHByb2plY3QsIGdlbmUsICJcblxuIikNCiAgICBnZW5lX2RmIDwtIGNvbnN0cnVjdF9nZW5lX2RmKGdlbmUsIHByb2plY3QpDQogICAgDQogICAgZml0IDwtIGNvbXB1dGVfc3VyaXZhbF9maXQoZ2VuZV9kZikNCiAgICBzdXJ2aXZhbCA8LSBjb21wdXRlX3N1cnZpdmFsX2RpZmYoZ2VuZV9kZikNCiAgICBjb3ggPC0gY29tcHV0ZV9jb3goZ2VuZV9kZikNCiAgICBwcmludChzdXJ2aXZhbCkNCiAgICBjYXQoIlxuIikNCiAgICBwcmludChjb3gpDQogICAgcHJpbnQocGxvdF9zdXJ2aXZhbChmaXQpKQ0KICAgIA0KICAgIGNhdCgiXG5cbj09PT09PT09PT09PT09PT09PT09PT09PT09PT1cblxuIikNCiAgfSANCn0NCmBgYA==