library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Necroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 1 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
gene_df <- vsd[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "tumor")))
q1 <- quantile(gene_df$counts, probs = 0.25)
q3 <- quantile(gene_df$counts, probs = 0.75)
gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
MLKL is the primary executor of necroptosis.
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("MLKL", genes$gene)) {
cat(project, gene, "\n\n")
tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
}
)
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD MLKL
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 3.46 0.682 1.69
strata=LOW 12 2 3.54 0.668 1.69
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.0980 0.3335 0.8831 -1.243 0.214
Likelihood ratio test=1.66 on 1 df, p=0.1972
n= 24, number of events= 7
============================
TCGA-COAD RBCK1
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.56 0.0753 0.158
strata=LOW 12 2 2.44 0.0790 0.158
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3653 0.6940 0.9231 -0.396 0.692
Likelihood ratio test=0.16 on 1 df, p=0.6897
n= 24, number of events= 5
============================
TCGA-COAD JAK2
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.8 0.230 0.665
strata=LOW 12 3 2.2 0.294 0.665
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9168 2.5013 1.1622 0.789 0.43
Likelihood ratio test=0.7 on 1 df, p=0.4015
n= 24, number of events= 5
============================
TCGA-COAD ZBP1
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 5.63 0.0703 0.198
strata=LOW 12 4 3.37 0.1174 0.198
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3068 1.3591 0.6916 0.444 0.657
Likelihood ratio test=0.19 on 1 df, p=0.6592
n= 24, number of events= 9
============================
TCGA-COAD RNF31
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.23 0.0246 0.0567
strata=LOW 12 3 2.77 0.0199 0.0567
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2397 1.2709 1.0088 0.238 0.812
Likelihood ratio test=0.06 on 1 df, p=0.8124
n= 24, number of events= 5
============================
TCGA-COAD IFNB1
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.23 0.0246 0.0567
strata=LOW 12 3 2.77 0.0199 0.0567
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2397 1.2709 1.0088 0.238 0.812
Likelihood ratio test=0.06 on 1 df, p=0.8124
n= 24, number of events= 5
============================
TCGA-COAD TRAF5
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.31 0.0295 0.0572
strata=LOW 12 5 4.69 0.0209 0.0572
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1843 1.2023 0.7712 0.239 0.811
Likelihood ratio test=0.06 on 1 df, p=0.8105
n= 24, number of events= 8
============================
TCGA-COAD BIRC2
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.68 0.0614 0.14
strata=LOW 12 3 3.32 0.0310 0.14
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4567 0.6333 1.2290 -0.372 0.71
Likelihood ratio test=0.14 on 1 df, p=0.7042
n= 24, number of events= 5
============================
TCGA-COAD TRAF2
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.05 0.00073 0.00301
strata=LOW 12 2 1.95 0.00152 0.00301
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.05532 1.05688 1.00841 0.055 0.956
Likelihood ratio test=0 on 1 df, p=0.9563
n= 24, number of events= 6
============================
TCGA-COAD BCL2
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 3.51 0.633 1.27
strata=LOW 12 2 3.49 0.637 1.27
Chisq= 1.3 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9122 0.4016 0.8371 -1.09 0.276
Likelihood ratio test=1.31 on 1 df, p=0.2516
n= 24, number of events= 7
============================
TCGA-COAD STAT4
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.47 0.1134 0.224
strata=LOW 12 3 3.53 0.0794 0.224
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4292 0.6510 0.9131 -0.47 0.638
Likelihood ratio test=0.23 on 1 df, p=0.6347
n= 24, number of events= 6
============================
TCGA-COAD BIRC3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.97 0.190 0.565
strata=LOW 12 4 3.03 0.312 0.565
Chisq= 0.6 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5737 1.7748 0.7730 0.742 0.458
Likelihood ratio test=0.56 on 1 df, p=0.4552
n= 24, number of events= 8
============================
TCGA-COAD STAT1
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 4.08 0.285 0.776
strata=LOW 12 4 2.92 0.397 0.776
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7463 2.1091 0.8668 0.861 0.389
Likelihood ratio test=0.79 on 1 df, p=0.3746
n= 24, number of events= 7
============================
TCGA-COAD STAT2
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 4.94 0.000797 0.00242
strata=LOW 12 3 3.06 0.001285 0.00242
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.03864 0.96210 0.78546 -0.049 0.961
Likelihood ratio test=0 on 1 df, p=0.9607
n= 24, number of events= 8
============================
TCGA-COAD TNFSF10
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.2 0.0182 0.0412
strata=LOW 12 2 1.8 0.0222 0.0412
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2047 1.2271 1.0101 0.203 0.839
Likelihood ratio test=0.04 on 1 df, p=0.8395
n= 24, number of events= 4
============================
TCGA-COAD TYK2
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.32 0.202 0.635
strata=LOW 12 1 1.68 0.278 0.635
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9410 0.3902 1.2251 -0.768 0.442
Likelihood ratio test=0.63 on 1 df, p=0.4262
n= 24, number of events= 4
============================
TCGA-COAD PPIA
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.27 0.0219 0.0483
strata=LOW 12 4 3.73 0.0192 0.0483
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1794 1.1965 0.8177 0.219 0.826
Likelihood ratio test=0.05 on 1 df, p=0.8265
n= 24, number of events= 7
============================
TCGA-COAD TNFRSF1A
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 2.31 1.239 2.31
strata=LOW 12 2 3.69 0.775 2.31
Chisq= 2.3 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.5455 0.2132 1.1195 -1.381 0.167
Likelihood ratio test=2.43 on 1 df, p=0.1193
n= 24, number of events= 6
============================
TCGA-COAD CAPN2
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.99 0.329 0.871
strata=LOW 12 3 2.01 0.491 0.871
Chisq= 0.9 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.8613 2.3663 0.9462 0.91 0.363
Likelihood ratio test=0.85 on 1 df, p=0.3556
n= 24, number of events= 5
============================
TCGA-COAD FAS
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.8 0.169 0.326
strata=LOW 12 5 4.2 0.153 0.326
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4163 1.5164 0.7343 0.567 0.571
Likelihood ratio test=0.33 on 1 df, p=0.5655
n= 24, number of events= 8
============================
TCGA-COAD PGAM5
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.07 0.00108 0.0027
strata=LOW 12 3 2.93 0.00150 0.0027
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.04065 1.04149 0.78216 0.052 0.959
Likelihood ratio test=0 on 1 df, p=0.9586
n= 24, number of events= 7
============================
TCGA-COAD MLKL
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 3.46 0.682 1.69
strata=LOW 12 2 3.54 0.668 1.69
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.0980 0.3335 0.8831 -1.243 0.214
Likelihood ratio test=1.66 on 1 df, p=0.1972
n= 24, number of events= 7
============================
TCGA-COAD FADD
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 0.971 0.000891 0.00173
strata=LOW 12 2 2.029 0.000426 0.00173
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.05889 0.94281 1.41483 -0.042 0.967
Likelihood ratio test=0 on 1 df, p=0.9668
n= 24, number of events= 3
============================
TCGA-COAD TRPM7
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 2.73 1.09 2.53
strata=LOW 12 4 2.27 1.31 2.53
Chisq= 2.5 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.627 5.090 1.131 1.439 0.15
Likelihood ratio test=2.62 on 1 df, p=0.1054
n= 24, number of events= 5
============================
TCGA-COAD FASLG
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 5 4.86 0.00429 0.0127
strata=LOW 12 3 3.14 0.00662 0.0127
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.08847 0.91533 0.78465 -0.113 0.91
Likelihood ratio test=0.01 on 1 df, p=0.9101
n= 24, number of events= 8
============================
TCGA-COAD TNFRSF10B
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.74 0.0399 0.063
strata=LOW 12 3 3.26 0.0212 0.063
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2325 0.7925 0.9281 -0.251 0.802
Likelihood ratio test=0.06 on 1 df, p=0.8037
n= 24, number of events= 5
============================
TCGA-COAD VPS4A
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 2.46 0.865 1.72
strata=LOW 12 5 3.54 0.600 1.72
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.365 3.917 1.122 1.217 0.224
Likelihood ratio test=1.85 on 1 df, p=0.1741
n= 24, number of events= 6
============================
TCGA-COAD TNFRSF10A
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 2.53 0.848 1.54
strata=LOW 12 3 4.47 0.481 1.54
Chisq= 1.5 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.0651 0.3447 0.8931 -1.193 0.233
Likelihood ratio test=1.53 on 1 df, p=0.2156
n= 24, number of events= 7
============================
TCGA-COAD GLUD1
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.31 0.0428 0.0836
strata=LOW 12 4 3.69 0.0269 0.0836
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2688 1.3084 0.9323 0.288 0.773
Likelihood ratio test=0.08 on 1 df, p=0.7717
n= 24, number of events= 6
============================
TCGA-COAD EIF2AK2
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 0 2.17 2.17 4.75
strata=LOW 12 4 1.83 2.56 4.75
Chisq= 4.8 on 1 degrees of freedom, p= 0.03
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.140e+01 1.959e+09 2.025e+04 0.001 0.999
Likelihood ratio test=6.27 on 1 df, p=0.0123
n= 24, number of events= 4
============================
TCGA-COAD CYLD
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.67 0.169 0.363
strata=LOW 12 4 3.33 0.135 0.363
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5438 1.7226 0.9138 0.595 0.552
Likelihood ratio test=0.36 on 1 df, p=0.5469
n= 24, number of events= 6
============================
TCGA-COAD SPATA2
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.42 0.242 0.459
strata=LOW 12 1 1.58 0.216 0.459
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8082 0.4457 1.2259 -0.659 0.51
Likelihood ratio test=0.46 on 1 df, p=0.4959
n= 24, number of events= 3
============================
TCGA-COAD DNM1L
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 1.88 0.411 0.832
strata=LOW 12 3 2.12 0.364 0.832
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.033 2.811 1.178 0.877 0.38
Likelihood ratio test=0.87 on 1 df, p=0.3509
n= 24, number of events= 4
============================
TCGA-COAD CFLAR
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 1.48 0.1584 0.32
strata=LOW 12 3 2.52 0.0935 0.32
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6849 1.9836 1.2344 0.555 0.579
Likelihood ratio test=0.33 on 1 df, p=0.5681
n= 24, number of events= 4
============================
TCGA-COAD TICAM1
[1] 35
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 4.03 0.000172 0.000693
strata=LOW 12 2 1.97 0.000351 0.000693
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.02633 1.02668 1.00026 0.026 0.979
Likelihood ratio test=0 on 1 df, p=0.979
n= 24, number of events= 6
============================
TCGA-COAD HSP90AA1
[1] 36
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.8 0.170 0.673
strata=LOW 12 3 2.2 0.294 0.673
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9297 2.5339 1.1708 0.794 0.427
Likelihood ratio test=0.71 on 1 df, p=0.3984
n= 24, number of events= 6
============================
TCGA-COAD IL33
[1] 37
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.5 0.0720 0.149
strata=LOW 12 5 4.5 0.0561 0.149
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2975 1.3465 0.7745 0.384 0.701
Likelihood ratio test=0.15 on 1 df, p=0.6995
n= 24, number of events= 8
============================
TCGA-COAD IRF9
[1] 38
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 0 0.444 0.444 0.8
strata=LOW 12 2 1.556 0.127 0.8
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.100e+01 1.317e+09 4.057e+04 0.001 1
Likelihood ratio test=1.18 on 1 df, p=0.2783
n= 24, number of events= 2
============================
TCGA-COAD SHARPIN
[1] 39
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 2.87 0.00606 0.0175
strata=LOW 12 2 2.13 0.00816 0.0175
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1323 0.8761 1.0010 -0.132 0.895
Likelihood ratio test=0.02 on 1 df, p=0.8949
n= 24, number of events= 5
============================
TCGA-COAD IFNAR1
[1] 40
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.66 0.165 0.611
strata=LOW 12 2 1.34 0.329 0.611
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.9385 2.5560 1.2414 0.756 0.45
Likelihood ratio test=0.61 on 1 df, p=0.4341
n= 24, number of events= 4
============================
TCGA-COAD XIAP
[1] 41
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 4.32 0.403 1.58
strata=LOW 12 3 1.68 1.036 1.58
Chisq= 1.6 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.0994 3.0023 0.9186 1.197 0.231
Likelihood ratio test=1.47 on 1 df, p=0.2257
n= 24, number of events= 6
============================
TCGA-COAD VDAC3
[1] 42
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 4.83 0.694 2.25
strata=LOW 12 5 3.17 1.059 2.25
Chisq= 2.2 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.499 4.479 1.096 1.368 0.171
Likelihood ratio test=2.48 on 1 df, p=0.1149
n= 24, number of events= 8
============================
TCGA-COAD CAMK2A
[1] 43
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.65 0.161 0.344
strata=LOW 12 4 3.35 0.128 0.344
Chisq= 0.3 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.5298 1.6986 0.9135 0.58 0.562
Likelihood ratio test=0.34 on 1 df, p=0.5573
n= 24, number of events= 6
============================
TCGA-COAD VDAC1
[1] 44
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 3 1.33 4
strata=LOW 12 4 2 2.00 4
Chisq= 4 on 1 degrees of freedom, p= 0.05
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.120e+01 1.615e+09 2.010e+04 0.001 0.999
Likelihood ratio test=5.55 on 1 df, p=0.01853
n= 24, number of events= 5
============================
TCGA-COAD RIPK3
[1] 45
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 3.09 0.383 0.793
strata=LOW 12 5 3.91 0.302 0.793
Chisq= 0.8 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7554 2.1284 0.8681 0.87 0.384
Likelihood ratio test=0.81 on 1 df, p=0.3694
n= 24, number of events= 7
============================
TCGA-COAD CAPN1
[1] 46
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.29 0.0259 0.0581
strata=LOW 12 3 2.71 0.0315 0.0581
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1979 1.2188 0.8221 0.241 0.81
Likelihood ratio test=0.06 on 1 df, p=0.8099
n= 24, number of events= 6
============================
TCGA-COAD USP21
[1] 47
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 3.18 0.211 0.4
strata=LOW 12 3 3.82 0.176 0.4
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4853 0.6155 0.7744 -0.627 0.531
Likelihood ratio test=0.4 on 1 df, p=0.5285
n= 24, number of events= 7
============================
TCGA-COAD AIFM1
[1] 48
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 3 3.52 0.0765 0.187
strata=LOW 12 4 3.48 0.0773 0.187
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3524 1.4225 0.8201 0.43 0.667
Likelihood ratio test=0.18 on 1 df, p=0.6682
n= 24, number of events= 7
============================
TCGA-COAD TRADD
[1] 49
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 2.45 0.979 1.96
strata=LOW 12 1 2.55 0.941 1.96
Chisq= 2 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.4467 0.2354 1.1235 -1.288 0.198
Likelihood ratio test=2.08 on 1 df, p=0.1492
n= 24, number of events= 5
============================
TCGA-COAD OPTN
[1] 50
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 1.43 0.231 0.445
strata=LOW 12 2 2.57 0.128 0.445
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8009 0.4489 1.2316 -0.65 0.515
Likelihood ratio test=0.45 on 1 df, p=0.502
n= 24, number of events= 4
============================
TCGA-COAD PPID
[1] 51
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 3.2 0.201 0.666
strata=LOW 12 1 1.8 0.357 0.666
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9194 0.3988 1.1646 -0.789 0.43
Likelihood ratio test=0.7 on 1 df, p=0.4012
n= 24, number of events= 5
============================
TCGA-COAD RIPK1
[1] 52
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 0 1.63 1.630 2.82
strata=LOW 12 5 3.37 0.789 2.82
Chisq= 2.8 on 1 degrees of freedom, p= 0.09
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.094e+01 1.239e+09 2.079e+04 0.001 0.999
Likelihood ratio test=4.26 on 1 df, p=0.0391
n= 24, number of events= 5
============================
TCGA-COAD TLR3
[1] 53
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 2.08 0.00342 0.00608
strata=LOW 12 3 2.92 0.00244 0.00608
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.07243 1.07512 0.92922 0.078 0.938
Likelihood ratio test=0.01 on 1 df, p=0.9377
n= 24, number of events= 5
============================
TCGA-COAD FAF1
[1] 54
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 4 3.91 0.00221 0.00514
strata=LOW 12 4 4.09 0.00211 0.00514
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.05552 0.94599 0.77455 -0.072 0.943
Likelihood ratio test=0.01 on 1 df, p=0.9428
n= 24, number of events= 8
============================
TCGA-COAD JAK1
[1] 55
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 2 4.21 1.16 3.27
strata=LOW 12 5 2.79 1.74 3.27
Chisq= 3.3 on 1 degrees of freedom, p= 0.07
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.754 5.780 1.097 1.599 0.11
Likelihood ratio test=3.51 on 1 df, p=0.06118
n= 24, number of events= 7
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
[1] "EIF2AK2" "VDAC1"
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
fit <- compute_surival_fit(gene_df)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
TCGA-COAD EIF2AK2
Warning: Loglik converged before variable 1 ; coefficient may be infinite.
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 0 2.17 2.17 4.75
strata=LOW 12 4 1.83 2.56 4.75
Chisq= 4.8 on 1 degrees of freedom, p= 0.03
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.140e+01 1.959e+09 2.025e+04 0.001 0.999
Likelihood ratio test=6.27 on 1 df, p=0.0123
n= 24, number of events= 4
============================
TCGA-COAD VDAC1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 12 1 3 1.33 4
strata=LOW 12 4 2 2.00 4
Chisq= 4 on 1 degrees of freedom, p= 0.05
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 2.120e+01 1.615e+09 2.010e+04 0.001 0.999
Likelihood ratio test=5.55 on 1 df, p=0.01853
n= 24, number of events= 5
============================
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎